

Design and Dosimetric Characterization of a Broadband Exposure Facility for In Vitro Experiments in the Frequency Range 18–40.5 GHz

G. Schmid¹, R. Hirtl¹, I. Gronau², V. Meyer², K. Drees², A. Lerchl²

¹ Seibersdorf Labor GmbH, Seibersdorf, Austria ² Jacobs University Bremen, Germany

URSI Austria Team Meeting May 3rd, 2022

Background

- Future cellular mobile communication networks will use millimeter wave (mmW) frequencies in addition to traditional frequency bands (< 6 GHz)
- **5G NR FR2:** ~ 24.3 27.5 GHz; ~ 39.5 43.3 GHz
- Reliable data about potential non-thermal effects caused by mmW exposure is scarce (Simkó & Mattsson 2019*)
- German Federal Office for Radiation Protection (BfS) is funding an in vitro study to investigate potential effects of future 5G-FR2 frequencies on human dermal fibroblasts and keratinocytes
- Presently carried out by Jacobs University Bremen (Lerchl-Group)
- Exposure facility developed by Seibersdorf Laboratories

* Simkó M, Mattsson MO. 2019. 5G Wireless Communication and Health Effects - A Pragmatic Review Based on Available Studies Regarding 6 to 100 GHz. Int J Environ Res Public Health 2019; 16 (18): E3406

Exposure Facility - Requirements

- Cell monolayer at the bottom of 5 ml culture medium inside a polystyrene (PS) petri dish (inner diameter 50 mm)
- Inside incubator(s) with constant environmental conditions (37 °C, saturated humidity, 5% CO₂)
- Selectable frequencies (27 or 40.5 GHz) and exposure duration
- Adjustable incident power flux density up to 100 W/m²
- Sham exposure shall be executed simultaneously to real exposure
- Continuous temperature monitoring of exposed and sham exposed samples during the experiments
- Minimum deviation from routine workflow of cell experimental procedures (e.g., avoiding laborious or poorly reproducible positioning of petri dishes inside the exposure apparatus)
- Blinded exposure control via easy-to-understand software interface

Incubator A

Exposure Facility -Concept

Exposure Facility – Outline overview

FREQUENTLY ASKED SOLUTIONS

Exposure Facility – Outline overview

URSI Austria Team Meeting, May 3rd, 2022

SEIBERSDORF LABORATORIES

FREQUENTLY ASKED SOLUTIONS

SEIBERSDORF

ABORATOR

Top view, sample holder removed (view on radoms)

Top view, radoms removed (view on antennas)

Top view, radom carrier removed

 Full wave (FDTD) computations Sim4Life (Zurich Med Tech)

- Full wave (FDTD) computations Sim4Life (Zurich Med Tech)
- Detailed CAD Model including all components / materials

	f [GHz]	Rel. permittivity ε_r	Conductivity σ [<i>S/m</i>]
Sample	27.0	2.05	0.05
holder (PTFE)	40.5	2.05	0.08
Petri dish (PS)	27.0	2.54	0.25
	40.5	2.54	0.25
Setup case (PP)	27.0	2.25	0.25
	40.5	2.25	0.35
Radomes	27.0	1.50	0.001
(styrofoam)	40.5	1.50	0.001
Culture medium	27.0	35.2	55.5
	40.5	20.6	72.2
Cell monolayer	27.0	24	32
2	40.5	16	42

- Full wave (FDTD) computations Sim4Life (Zurich Med Tech)
- Detailed CAD Model including all components/materials
- Experimental validation

Simulation Simulation Antenne A1/B1 (linke Seite) S 21 26 31 36 41 46 51 dB(V/m)

Antenne A2/B2

(rechte Seite)

SAR statistics in cell monolayer @ 27 GHz, 1 W

		Elliptical harvesting area (centered in petri dish, semi-axis $a = 24$ mm)								
		Semi-axis b [mm]								
		24	23	22	21	20	19	18	17	
Cell yield ^a [%]		92	88	84	81	77	73	69	65	
Maximum SAR [W/kg]		162	162	162	162	162	162	162	162	
Mean SAR [W/kg]		111	112	114	115	117	119	121	123	
Minimum SAR [W/kg]		68.8	69.6	69.6	69.6	72.3	72.6	78	86.7	and the second se
Fraction of cells exposed	>90%	8.3	8.6	9.1	9.5	10	10.5	11	12	
to [%]	v. Max									b
	>80%	20	21	22	23	25	26	27	29	
	v. Max									
	>70%	52	54	57	60	63	66	70	74	
	v. Max									
	>60%	68	71	75	78	83	86	91	96	
	v. Max									
	>50%	87	89	90	93	96	99	100	100	
	v. Max									
Max/Min [dB]		3.71	3.66	3.66	3.66	3.49	3.47	3.14	2.70	
Max/Mean [dB]		1.64	1.58	1.52	1.46	1.39	1.32	1.25	1.18	

SAR = specific absorption rate.

^aRelative of entire circular inner petri dish bottom area with radius 25 mm.

	SAR statist	tics in co	ell mon	olayer (@ 40.5	GHz, 1	W			
					Harv	vesting a	area in 1	the shap	be of cire	cle segment (R,x)
								<i>R</i> / <i>x</i> [1	nm]	
		24/24	24/20	24/19	24/18	23/23	23/20	23/19	23/18	
Cell yield ^a [%]		92	88	87	86	85	84	81	80	
Maximum SAR [V	V/kg]	211	211	211	211	211	211	211	211	
Mean SAR [W/kg]		159	161	162	163	162	163	164	165	and the second se
Minimum SAR W	/kg]	66.7	85.4	97.7	108	67.1	85	99	112	and the second s
Fraction of cells	>90%	6.8	7.1	7.2	7.3	7.5	7.6	7.7	7.9	
exposed to [%]	v. Max									1/2 ×
	>80%	36	37	38	38	39	40	41	41	
	v. Max									
	>70%	76	78	80	81	82	84	85	87	
	v. Max									$\mathbf{R} = \mathbf{I}$
	>60%	91	94	95	97	94	96	97	99	
	v. Max									
>50%	>50%	95	98	100	100	96	98	100	100	
	v. Max									and the second se
Max/Min [dB]		5.00	3.94	3.35	2.92	4.98	3.94	3.29	2.76	
Max/Mean [dB]		1.25	1.17	1.14	1.12	1.16	1.11	1.08	1.06	

^aRelative of entire circular inner petri dish bottom area with radius 25 mm.

In vitro Studie Exposition von Hautzellen bei 27 GHz und 40,5 GHz Steuer und Monitoring Software V1.0 - November 2020				
Session ID festlegen	aktuelle session ID Testsession_112			
Expositionsparameter				
 ✓ 27 GHz 40,5 GHz Expositionsstärke 1 mW/cm2 マ 				
Expositionszeit				
Start Exposition				

Software

In vitro Studie Exposition von Hautzellen bei 27 GHz und 40,5 GHz Steuer und Monitoring Software V1.0 - November 2020					
	aktuelle session ID				
Session ID festlegen	Testsession_112				
Expositionsparameter					
Frequenz					
27 GHz 🗸					
Expositionsstärke 1 mW/cm2					
10 mW/cm2					
anderer Wert:					
Start Exposition					

In vitro Studie Exposition von H Steuer und Monitoring S	autzellen bei 27 GHz und 40,5 GHz oftware V1.0 - November 2020
aktuelle sessi	on ID
Session ID festlegen Testsession_	112
Expositionsparameter	
Frequenz	
27 GHz 🔻	Exposition aktiv
Expositionsstärke	verbleibende Zeit [min]: 1.53
anderer Wert: 0.7 mW/cm	2 Stop
Expositionszeit Stunden Minuten	
andere Zeit: v 3 15	
Start Exposition	

Summary and conclusions

- Novel exposure facility for in vitro studies on cell monolayers investigating possible effects of radiofrequency exposure in the frequency range 18 – 40.5 GHz has been developed
- Presently executed at frequencies of 27 and 40.5 GHz for a study on human dermal fibroblasts and keratinocytes
- Mean SAR values inside cell monolayer of 115 W/kg (27 GHz) and 160 W/kg (40.5 GHz) per watt antenna input power
- For reasonable amounts of harvested cells (80% of petri dish bottom area), variation (max/min) of SAR over the cell monolayer remains below 3.7 dB (27 GHz) and 3.0 dB (40.5 GHz), respectively

Summary and conclusions

Bioelectromagnetics 43:25-39 (2022)

Design and Dosimetric Characterization of a Broadband Exposure Facility for In Vitro Experiments in the Frequency Range 18-40.5 GHz

Gernot Schmid,¹ Rene Hirtl,¹ Isabel Gronau,² Vivian Meyer,² Karen Drees,² and Alexander Lerchl ⁰²*

¹Seibersdorf Laboratories, Seibersdorf, Austria ²Department of Life Sciences & Chemistry, Jacobs University Bremen, Bremen, Germany

Thank you!