

SINGING COMET CHANGES ITS SONG

THE SINGING COMET

Quasi-monochromatic waves observed in the magnetic field data

- Between 10 and 100 mHz
- Propagation direction perpendicular to B
- Compressional waves
- Richter et al. (2015)

Weibel instability

- Newly picked-up ions
- Very large gyro radius
- Cross-field current
- Meier et al. (2016)

RE-APPEARANCE NEAR END OF MISSION

At "high" activity of 67P/CG signature was not seen:

- Instability does not occur
- Signal is drowned in "turbulent" field around comet
- Glassmeier (2017)

Tail excursion

- Near end of mission
- 24 March until 10 April 2016
- Close to comet: singing comet
- However ... different

IWF.OEAW.AC.AT

CHARACTERISTICS OF WAVES

The waves are characterized by:

- ~20 mHz
- Phase changes with ion density
 - From in-phase (fast mode)
 - To anti-phase (slow mode)
- Compressional vs. Transverse changes
 - Compressional left-hand
 - Transverse linear

Dat e	Time	В	IBI	Min	Max	$\lambda_{int}/\lambda_{mi}$	$\lambda_{max}/\lambda_{i}$
26	9.9 – 10.1	(3.40, -9.24, -1.21)	9.9	(-0.42, 0.27, 0.87)	(0.85, -0.21, 0.47)	2	3
27	9.9 – 10.1	(-1.87, 3.75, 0.02)	4.2	(0.13, -0.36, 0.92)	(-0.99, -0.09, 0.11)	4	4
26	10.7 – 10.9	(5.35, -8.61, 4.36)	11.0	(-0.41, 0.39, 0.82)	(0.79, -0.29, 0.53)	2	3
27	10.7 – 10.9	(-2.20, -4.16, 5.97)	7.6	(0.10, -0.99, -0.10)	(-0.99, -0.10, 0.04)	2	5
Dat e	Time	L _{B,min}	∟ _{B,} max	L/R	С/Т	L _{R,min}	∟ _{B,R}
26	9.9 – 10.1	115	115	3.0	2.0	132	92
27	9.9 – 10.1	105	122	1.2	0.5	103	89
26	10.7 – 10.9	99	32	3.7	2.1	121	124
27	10.7 – 10.9	63	68	1.2	0.5	76	78

"SOLUTIONS" TO THIS "PROBLEM"

Is it the magnetometer offset?

It can be shown that:

- If there is an unresolved magnetometer offset
- A fast-mode wave, with B and n in phase
- Can change into a slow-mode wave with B and n in anti-phase

In this case the error in the calculated offset should be more than 15 nT

This is unrealistic

Do waves behave differently in a two-ion plasma?

- Calculation of the mobility tensor for 2 ions
- Determination of phase B-n
- Determination of polarization of E

