

4th URSI Austria Meeting

Planetary radio astronomy by space-borne and ground-based low-frequency observations

H.O. Rucker

Commission for Astronomy Austrian Academy of Sciences Graz, Austria

Nov 5, 2015

UTR-2, June, 2015

Konovalenko et al., 2015

Ukrainian decameter radio telescopes

Radio telescope	Allocation	Frequency range, MHz	Maximal effective area, m ²	The number of elements, polarization	Distance from UTR-2 (LOFAR), km	Synthesis or VLBI resolution at 25 MHz
UTR-2	Kharkiv, RI NASU	8 - 32	140 000	2040, 1 linear	0 (~2000)	25' × 25'
URAN-1	Zmiiv, RI NASU	8 - 32	5 500	96, 2 linear	42 (~1900)	15″
URAN-2	Poltava, PGO NASU	8 - 32	28 000	512, 2 linear	150 (~1800)	5"
URAN-3	Lviv, PMI NASU	8 - 32	14 000	256, 2 linear	915 (~1000)	1"
URAN-4	Odesa, RI NASU	8 - 32	7 300	128, 2 linear	613 (~1500)	1.3"

Konovalenko et al., 2015

URAN-1...URAN-4 radio telescopes Σ N (URAN) = 1000*2; Σ N (total) = 4040; Aeff (total) = 200000 sq. m

SKR

Ground-based detection and studies of the Saturn electrostatic discharges with the UTR-2

V. Zakharenko, C. Mylostna, A. Konovalenko, ... H. Rucker et al.: Ground-based and spacecraft observations of lightning activity on Saturn, Planet. Space Sci., **61**,53-59, 2012.

Non-thermal radio waves originating from the Jovian magnetosphere

Recent detection (2015): **Zebra stripe-like patterns** in Jovian decametric frequency range

- Observations from URAN-2
- statistical analysis of Jovian zebra structures
 - CML, lo phase, polarization, frequency properties
 - basis for theoretical framework of Jovian zebra phenomenon

Observations & data

- 44 most distinctive incidents in terms of high resolution and intensity selected
 - dynamic spectra
 - characterization of event
 - run of individual zebra stripes recorded (\rightarrow frequency properties)

Occurrence distribution as functions of CML and Io phase

- "active" longitudes where emission of zebra structures more likely
- 2 regions of CML:
 - 300° to 60°
 - 100° to 160°
- \rightarrow 2 active regions
- Io phase: zebra events controlled by Io
- ightarrow not controlled by Io

Rosker et al., 2015

Polarization

Frequency properties

- overall frequency range: 12.5 MHz ca. 29.7 MHz
 - mean range for 1 event: 2.7 ± 1.5 MHz
- frequency splitting: mean $\Delta f = 0.8 \pm 0.4$ MHz
 - Δ f_{min} = 0.2 MHz, Δ f_{max} = 3.7 MHz
- frequency splitting increases with increasing frequency (72 % of cases)

Frequency range – CML

- 100° to 160° CML:
 - widespread events
 - events with larger number of stripes
 - events with higher frequency values

Frequency range – polarization

- 100° to 160° CML:
 - widespread events
 - events with larger number of stripes
 - events with higher frequency values
 - mostly RH polarized
 - emerge from northern hemisphere
 - in accordance with stronger magnetic field strength in northern hemisphere

Possible generation mechanism

- similar phenomenon observed by Cassini during the Jupiter flyby 2000/2001
 - study on zebra pattern in low-frequency Jovian radio emission (tens of kHz) [4]
 - connected to solar zebra [5]-[7]
- zebra stripes first observed in radio spectra of Sun (1960ies) [8] GHZ
 - from ≈ 100 MHz to a few GHz
 - possible mechanism for wave generation: double plasma resonance (DPR)

generation efficiency of waves significantly higher if frequency (close to the upper hybrid frequency f_{uh}) is at harmonics of the electron cyclotron frequency f_c :

$$f_{uh} \cong s * f_c$$
 with $s = 2,3,4, \dots$

- we use DPR as starting point for theoretical explanation of Jovian DAM zebra
 - for DPR of electrons very high plasma density required

2.8

3.0

3.4

3.6

Frequency, 3.2

Jupiter DAM: Model of radio emission cone

STEREO B

STEREO A

STEREO Orbit

Stereoscopic observation of Jovian DAM by STEREO-A and -B

Stereoscopic observation of Jovian DAM by STEREO-A and -B

t, min

Stereoscopic observation of Jovian DAM by STEREO-A and -B

Summary:

- Ground-based planetary radio astronomy yields new discoveries due to increasing sensitivity of radio telescopes, increasing antenna arrays, and improved backend facilities
- Space-borne planetary radio astronomy yields new possibilities due to stereoscopic observations
- The combination of both ground-based and space-borne observations of solar, heliospheric, and planetary radio emission is thus the goal for present and future solar system radio astronomy