URSI Austria Commission Meeting

Institute of Microwave and Photonic Engineering

Wolfgang Bösch
wbosch@tugraz.at
IHF – Research Areas

Radar and Wave Propagation
RF and mmW Technologies & Measurements
Optoelectronic and Photonics
RFID Technologies
MIMO & OTA Systems

Radar Targets
Adaptive Antennas and Filters

Research Partners:
- Infineon
- AVL
- NXP
- AT&S
- Rohde & Schwarz
- Rosenberger
- DWD
- Joanneum Research
- Viper RF

Current Research Projects:
- **SeCos**
 - RFID at mmW
 - RFID reader & tag for localisation
- **MARG**
 - FMCW weather radar
 - HW & SW development
- **GAZELE**
 - Automotive radar stimulator
 - Real-time & multiple targets
- **K@Home**
 - Potassium sensor
 - CMOS clock

Institute of Microwave and Photonic Engineering
IHF – Infrastructure

MW and mmW Laboratory
- Complex MW measurements 10MHz to 110 GHz
- Automated on-wafer measurements (-40degC to 170degC)
- 80 m² clean room

Anechoic Chamber
- Emission Measurements
- Antenna Patterns
- MIMO & OTA measurements

Research Radar
- C-Band weather radar
- X-Band mono-pulse system

RFID
- RFID Reader
- Simulink modelling
- Localisation
Three Papers at the

1. (URSI) FRP-UB.3A.7: A MM-WAVE RFID SYSTEM BASED ON THE EPC-GEN2 PROTOCOL
2. (URSI) TU-UC.1A.4: A SOLID-STATE C-BAND FMCW SENSOR SYSTEM FOR PRECIPITATION MEASUREMENT
3. (URSI) MO-UE.1A.4: ESD PROTECTION FOR MOBILE HANDSET ANTENNA APPLICATIONS
A Solid-State C-Band FMCW Sensor System for Precipitation Measurements

Helmut Paulitsch, Graz University of Technology (Austria)
Ferenc Dombai, MET-ENV, Budapest (Hungary)
Jim Mayock, VIPER RF (UK)
Wolfgang Bösch, Graz University of Technology (Austria)

2015 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting
19–25 July 2015 • Vancouver, BC, Canada

Institute of Microwave and Photonic Engineering
wbosch@tugraz.at
MARG weather radar concept provides

- High range resolution 50m
- Measurement range 30km
- Radar scanning time 30sec
- Highly integrated radar electronic
- Sophisticated FMCW signal processing
- State of the art MW hardware (GaN)
- Low cost implementation
ESD Protection for Mobile Handset Antenna Applications

Thomas Schwingshackl\(^{(1,2)}\), Joost Willemen\(^{(1)}\)
Wolfgang Bösch \(^{(2)}\)
(1) Infineon Technologies AG Munich,
(2) Technical University of Graz, Austria
A mm-Wave RFID System based on the EPC-Gen2 Protocol

Ph. Freidl¹, M. Gadringer¹, U. Mühlmann², G. Holweg³, W. Bösch¹
1 Institute of Microwave and Photonic Engineering, Graz University of Technology, Graz, Austria
2 NXP Semiconductors, Gratkorn, Austria
3 Development Center Graz, Infineon Technologies Austria AG

MMID Basestation
1. mm-wave transceiver chipset
2. standard gain horn antennas
3. arbitrary signal generator for IQ signals
4. sampling card for IQ signals
5. 2-channel variable baseband amplifier

Diagram:
- Computer MATLAB® / AWR
- 3 Baseband Generator
- 4 2-channel ADC
- 5 Baseband Amplifier
- 1 mm-wave transceiver
- 2 TX Antenna
- 2 RX Antenna

Diagram Legend:
- Commands
- Digital Baseband Signals
- Baseband Signals
- RF Signals
A mm-Wave RFID System based on the EPC-Gen2 Protocol

MMID Transponder
1. antenna(-array)
2. matching network
3. mm-wave diode
4. microstrip low-pass filter
5. lumped elements low-pass filter with a bias-tee
6. adapter circuitry between the mm-wave frontend and the digital baseband chip
7. EPC Gen2 digital baseband chip