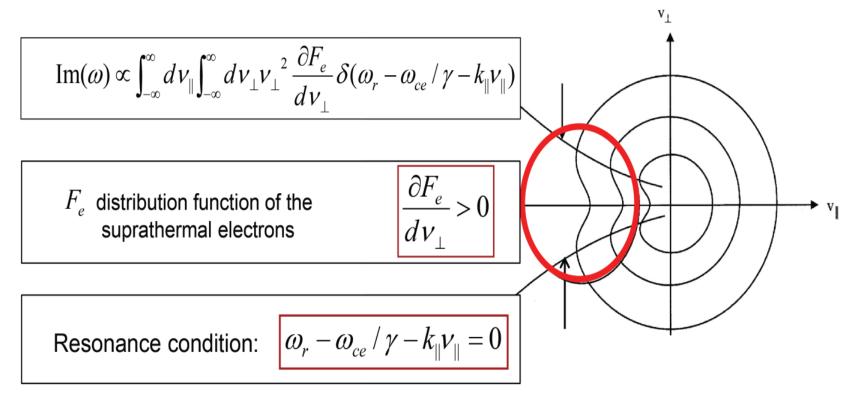

Potential Radio Emission of Exoplanets

Christof Weber (1) and Helmut O. Rucker (2) (1) Space Research Institute (2) Commission for Astronomy Austrian Academy of Sciences, Graz, Austria November 10, 2014

Predictions of exoplanet radio-emission Hot Jupiters are the best candidates for observation (e.g. Tau Bootes b)



Cyclotron Maser Instability (CMI)

- CMI = generation mechanism of radio emission
- Unstable electron distribution in the (exo)planetary magnetosphere
- Necessary condition for the CMI to work: ambient plasma density must be small compared with cyclotron frequency

$$\omega_{pe} << \omega_{ce} \qquad \qquad f_{pe} << f_{ce}$$

- Free energy in electron distribution exceeds threshold and is converted to, e.g., radio emission
- Loss cone distribution: direct conversion to electromagnetic waves

Different scenarios for high efficiency of the CMI

- Moon around a Jovian exoplanet (Io-Jupiter system) (Nichols (2011, 2012)) (detection also possible for larger orbits)
- Hot Jupiter systems (0.015 0.5 AU orbital distance) (Jupiter: 5.2 AU)
- In general: larger magnetic field strength, high planetary rotation rates and high stellar XUV luminosity lead to stronger emission

Detecting radio emission of exoplanets: Why is it important?

- Status of 3rd of November 2014: 1849 planets
- Direct detection method
- Frequency of radio emission gives estimate of magnetic field strength $f_{ce} = \frac{1}{2\pi} \frac{eB}{m_e}$
- Possibility of detecting exoplanetary magnetospheres
- Determine orbital parameters like inclination
- Determine orbital and rotational period from modulation of radio emission
- Existence of exomoons

- Radio emission of exoplanets has not been detected yet
- Future detection from the ground expected with SKA

Ukraine,UTR2

Thanks for your attention!

Ukraine/GURT,UTR2