Scope
- Physical interaction of electromagnetic fields with biological systems;
- Biological effects of electromagnetic fields;
- Mechanisms underlying the effects of electromagnetic fields;
- Experimental electromagnetic fields exposure systems;
- Assessment of human exposure to electromagnetic fields;
- Medical applications of electromagnetic fields.

Exposure assessment

Human Modeling
- Assessment of intracorporal 3D-distribution of EMF-induced current densities and electric fields;
- Assessment of intracorporal distribution of RF-EMF energy absorption rates (SAR);
- Thermal modelling of RF-EMF heating;
- Risk assessment of medical EMF applications (e.g., defibrillation, diathermy, MRI);
- Assessment of risk from EMF sources (e.g., electrical appliances, automotive systems, RFID gates, mobile phones, WLAN, radar);

Virtual Patients
Exposure assessment

Biologic Modeling

- intracorporal 3D-exposure assessment of heart and brain;
- numerical modeling of cellular excitation;
- numerical modeling of cardiac excitation;
- numerical modeling of cardiac fibrillation

virtual cells
virtual heart

Electromagnetic Compatibility

medical implants

- modeling of exposure scenarios (e.g., power lines, RFID gates, MRI)
- calculation of interference voltages of electronic implants
- SAR-related aspects of metallic implants
- thermal risks due to metallic implants of EMF-exposed persons
- risk assessment

virtual pacemaker patients
Exposure assessment

Field Measurements

- static electric fields
- static magnetic fields
- ELF electric fields
- ELF magnetic fields
- IF electromagnetic fields
- RF electromagnetic fields
- mobile telecommunication fields

N. Leitgeb: INSTITUTE OF HEALTH CARE ENGINEERING with EUROPEAN NOTIFIED BODY OF MEDICAL DEVICES
Graz University of Technology